Star Connected Unbalanced Load

Power consumed by three phase load

The power consumed by the three phase load is given by sum of power consumed by each individual load in each phase.

$$\begin{split} P &= \left| V_{R} \right| \; \left| I_{R} \right| \; COS\varnothing_{R} + \left| V_{Y} \right| \; \left| \; I_{Y} \right| COS\varnothing_{Y} + \left| V_{B} \right| \; \left| I_{B} \right| \; COS\varnothing_{B} \\ &= \; V_{R}I_{R} \; COS\varnothing_{R} + V_{B}I_{B} \; COS\varnothing_{Y} + V_{B}I_{B} \; COS\varnothing_{B} \end{split}$$

Where, θ_R = Phase difference between V_R and I_R

 θ_Y = Phase difference between V_Y and I_Y

 θ_B = Phase difference between V_B and I_B

Since the current and voltage through each phase is unbalanced the total power can be calculated by using the current and voltage flowing through each phase

$$I_{R} \neq I_{Y} \neq I_{B}$$

$$V_{R} \neq V_{Y} \neq V_{B}$$

Hence the power consumed by the three phase unbalanced load is given by, $P = \ V_R I_R \ COS\varnothing_R + V_B I_B \ COS\varnothing_Y + V_B I_B \ COS\varnothing_B$