A comparison of the most commonly used metals as conductors is given in Table below:

Types of materials used				
PROPERTIES	Silver	Copper	Gold	Aluminium
Ability to withdrawn into thin wire	Very good	Very good	Very good	Not good
Flexibility	Very good	Very good	Very good	Not good
Conductivity	Very good (100%)	Very Good (94%)	Good (67%)	Good (56%)
Receptivity in m at 200 C	1.6 x 10-8	1.7 x 10-8	2.4 x 10-8	2.85 x 10-8
Ability to withstand extreme atmospheric conditions	Good	Good	Very good	Bad
Cost	Expensive	Cheap	Expensive	Very cheap

Temperature coefficient of resistance

It is investigated that the resistance of a conductor varies with temperature. The effect of resistance due to change in the temperature is called as the Temperature Co-efficient of Resistance.

This is the relative change of a resistance when the temperature is changed by 1 deg K. It is represented by the Greek letter α .

Material	Temperature Coefficient of Resistance, a	
Silver	0.0038	
Copper	0.0039	
Aluminium	0.0039	

Consider a material having a resistance R_0 at 0^{0} C.

Let it have a resistance of R_1 at θ_1 , and R_2 at θ_2 .

If a is the temperature coefficient of resistance at 0° C,

$$\mathsf{R}_1 {=} \; \mathsf{R}_0 \; [1 {+} \; \mathsf{a}.\Theta_1)$$

$$R_2 = R_0 (1 + \alpha.\theta_2)$$

$$R_1/R_2 = (1 + \alpha.\Theta_1)/(1 + \alpha.\Theta_2)$$

This can also be written as:

$$R_2 = R_1 [I + a (\Theta_2 - \Theta_1)]$$

If the resistance of a coil is measured at the beginning and at the end of a test, the temperature rise of the coil can be determined.

The resistance of carbon, electrolytes and dielectrics decreases with increase of temperature. Hence the Temperature Co-efficient of Resistance does not apply in such materials.