

Querying with Transact-SQL
Lab 10 – Programming with Transact-SQL

Overview
In this lab, you will use some basic Transact-SQL programming logic to work with data in the

AdventureWorksLT database.

Before starting this lab, you should view Module 10 – Programming with Transact-SQL in the Course

Querying with Transact-SQL. Then, if you have not already done so, follow the instructions in the Getting

Started document for this course to set up the lab environment.

If you find some of the challenges difficult, don’t worry – you can find suggested solutions for all of the

challenges in the Lab Solution folder for this module.

What You’ll Need
 An Azure SQL Database instance with the AdventureWorksLT sample database. Review the

Getting Started document for information about how to provision this.

Challenge 1: Creating scripts to insert sales orders
You want to create reusable scripts that make it easy to insert sales orders. You plan to create a script to

insert the order header record, and a separate script to insert order detail records for a specified order

header. Both scripts will make use of variables to make them easy to reuse.

Tip: Review the documentation for variables and the IF…ELSE block in the Transact-SQL Language

Reference.

1. Write code to insert an order header
Your script to insert an order header must enable users to specify values for the order date, due date,

and customer ID. The SalesOrderID should be generated from the next value for the

SalesLT.SalesOrderNumber sequence and assigned to a variable. The script should then insert a record

into the SalesLT.SalesOrderHeader table using these values and a hard-coded value of ‘CARGO

TRANSPORT 5’ for the shipping method with default or NULL values for all other columns.

After the script has inserted the record, it should display the inserted SalesOrderID using the PRINT

command.

Test your code with the following values:

Order Date Due Date Customer ID

Today’s date 7 days from now 1

https://msdn.microsoft.com/library/ms188927.aspx
https://msdn.microsoft.com/library/ms182717.aspx

Note: Support for Sequence objects was added to Azure SQL Database in version 12, which became

available in some regions in February 2015. If you are using the previous version of Azure SQL database

(and the corresponding previous version of the AdventureWorksLT sample database), you will need to

adapt your code to insert the sales order header without specifying the SalesOrderID (which is an

IDENTITY column in older versions of the sample database), and then assign the most recently

generated identity value to the variable you have declared.

2. Write code to insert an order detail
The script to insert an order detail must enable users to specify a sales order ID, a product ID, a quantity,

and a unit price. It must then check to see if the specified sales order ID exists in the

SalesLT.SalesOrderHeader table. If it does, the code should insert the order details into the

SalesLT.SalesOrderDetail table (using default values or NULL for unspecified columns). If the sales order

ID does not exist in the SalesLT.SalesOrderHeader table, the code should print the message ‘The order

does not exist’. You can test for the existence of a record by using the EXISTS predicate.

Test your code with the following values:

Sales Order ID Product ID Quantity Unit Price

The sales order ID
returned by your
previous code to insert
a sales order header.

760 1 782.99

Then test it again with the following values:

Sales Order ID Product ID Quantity Unit Price

0 760 1 782.99

Challenge 2: Updating Bike Prices
Adventure Works has determined that the market average price for a bike is $2,000, and consumer

research has indicated that the maximum price any customer would be likely to pay for a bike is $5,000.

You must write some Transact-SQL logic that incrementally increases the list price for all bike products

by 10% until the average list price for a bike is at least the same as the market average, or until the most

expensive bike is priced above the acceptable maximum indicated by the consumer research.

Tip: Review the documentation for WHILE in the Transact-SQL Language Reference.

1. Write a WHILE loop to update bike prices
The loop should:

 Execute only if the average list price of a product in the ‘Bikes’ parent category is less than the

market average. Note that the product categories in the Bikes parent category can be

determined from the SalesLT.vGetAllCategories view.

 Update all products that are in the ‘Bikes’ parent category, increasing the list price by 10%.

 Determine the new average and maximum selling price for products that are in the ‘Bikes’

parent category.

https://msdn.microsoft.com/library/ms178642.aspx

 If the new maximum price is greater than or equal to the maximum acceptable price, exit the

loop; otherwise continue.

Next Steps
Well done! You’ve completed the lab, and you’re ready to learn how to handle errors and implement

transactions in Transact-SQL by completing Module 11 – Error handling and Transactions in the Course

Querying with Transact-SQL.

