Digestione e Metabolismo
Loading
Precedente Previous slide Next slide Successivo
New course

Questo corso è stato rivisto!

Per un'esperienza di apprendimento più piacevole, ti consigliamo di studiare la versione ripubblicata di questo corso per cellulari.

Portatemi al corso rivisto.

- or -

Continue studying this course

Digestione e Metabolismo

  • Study Reminders

    Set your study reminders

    We'll email you at these times to remind you to study

    You can set up to 7 reminders per week

    You're all set

    We'll email you at these times to remind you to study

    Monday

    -

    7am

    +

    Tuesday

    -

    7am

    +

    Wednesday

    -

    7am

    +

    Thursday

    -

    7am

    +

    Friday

    -

    7am

    +

    Saturday

    -

    7am

    +

    Sunday

    -

    7am

    +
  • Note di Apprendimento
  • Revisione degli argomenti
    Oladele Segun E.
    NG
    Oladele Segun E.

    Digestive system Digestive systems take many forms. There is a fundamental distinction between internal and external digestion. External digestion developed earlier in evolutionary history, and most fungi still rely on it.[2] In this process, enzymes are secreted into the environment surrounding the organism, where they break down an organic material, and some of the products diffuse back to the organism. Animals have a tube (gastrointestinal tract) in which internal digestion occurs, which is more efficient because more of the broken down products can be captured, and the internal chemical environment can be more efficiently controlled.[3] Some organisms, including nearly all spiders, simply secrete biotoxins and digestive chemicals (e.g., enzymes) into the extracellular environment prior to ingestion of the consequent "soup". In others, once potential nutrients or food is inside the organism, digestion can be conducted to a vesicle or a sac-like structure, through a tube, or through several specialized organs aimed at making the absorption of nutrients more efficient. Schematic drawing of bacterial conjugation. 1- Donor cell produces pilus. 2- Pilus attaches to recipient cell, bringing the two cells together. 3- The mobile plasmid is nicked and a single strand of DNA is transferred to the recipient cell. 4- Both cells recircularize their plasmids, synthesize second strands, and reproduce pili; both cells are now viable donors. Secretion systems Main article: Secretion Bacteria use several systems to obtain nutrients from other organisms in the environments. Channel transport system In a channel transupport system, several proteins form a contiguous channel traversing the inner and outer membranes of the bacteria. It is a simple system, which consists of only three protein subunits: the ABC protein, membrane fusion protein (MFP), and outer membrane protein (OMP)[specify]. This secretion system transports various molecules, from ions, drugs, to proteins of various sizes (20 - 900 kDa). The molecules secreted vary in size from the small Escherichia coli peptide colicin V, (10 kDa) to the Pseudomonas fluorescens cell adhesion protein LapA of 900 kDa.[4] Molecular syringe One molecular syringe is used through which a bacterium (e.g. certain types of Salmonella, Shigella, Yersinia) can inject nutrients into protist cells. One such mechanism was first discovered in Y. pestis and showed that toxins could be injected directly from the bacterial cytoplasm into the cytoplasm of its host's cells rather than simply be secreted into the extracellular medium.[5] Conjugation machinery The conjugation machinery of some bacteria (and archaeal flagella) is capable of transporting both DNA and proteins. It was discovered in Agrobacterium tumefaciens, which uses this system to introduce the Ti plasmid and proteins into the host, which develops the crown gall (tumor).[6] The VirB complex of Agrobacterium tumefaciens is the prototypic system.[7] The nitrogen fixing Rhizobia are an interesting case, wherein conjugative elements naturally engage in inter-kingdom conjugation. Such elements as the Agrobacterium Ti or Ri plasmids contain elements that can transfer to plant cells. Transferred genes enter the plant cell nucleus and effectively transform the plant cells into factories for the production of opines, which the bacteria use as carbon and energy sources. Infected plant cells form crown gall or root tumors. The Ti and Ri plasmids are thus endosymbionts of the bacteria, which are in turn endosymbionts (or parasites) of the infected plant. The Ti and Ri plasmids are themselves conjugative. Ti and Ri transfer between bacteria uses an independent system (the tra, or transfer, operon) from that for inter-kingdom transfer (the vir, or virulence, operon). Such transfer creates virulent strains from previously avirulent Agrobacteria. Release of outer membrane vesicles In addition to the use of the multiprotein complexes listed above, Gram-negative bacteria possess another method for release of material: the formation of outer membrane vesicles.[8][9] Portions of the outer membrane pinch off, forming spherical structures made of a lipid bilayer enclosing periplasmic materials. Vesicles from a number of bacterial species have been found to contain virulence factors, some have immunomodulatory effects, and some can directly adhere to and intoxicate host cells. While release of vesicles has been demonstrated as a general response to stress conditions, the process of loading cargo proteins seems to be selective.[10] Venus Flytrap (Dionaea muscipula) leaf Gastrovascular cavity

    Kamran N.
    PK
    Kamran N.

    what is Lumen ?

    Omar M.
    MW
    Omar M.

    Nice points,, what is the difference between mineral and water?

    Angella N.
    JM
    Angella N.

    Would someone help me to start up this course, the ad at the top seem to cover the literature and i am unable to view the words

    Angella N.
    JM
    Angella N.

    is anyone else having this probelm? I am unable to read the text in the box as its not moving with roll of the curosr.

Notification

You have received a new notification

Click here to view them all