
Exercise 1

Create a query with the following columns:

• “PurchaseOrderID” from the Purchasing.PurchaseOrderHeader table

• “OrderDate” from the Purchasing.PurchaseOrderHeader table

• “TotalDue” from the Purchasing.PurchaseOrderHeader table

• “Name” from the Purchasing.Vendor table, which can be aliased as “VendorName”*

*Join Purchasing.Vendor to Purchasing.PurchaseOrderHeader on BusinessEntityID = VendorID

Apply the following criteria to the query:

• Order must have taken place on or after 2013

• TotalDue must be greater than $500

Exercise 2

Modify your query from Exercise 1 by adding a derived column called

"PrevOrderFromVendorAmt", that returns the “previous” TotalDue value (relative to the current row)

within the group of all orders with the same vendor ID. We are defining “previous” based on order date.

Exercise 3

Modify your query from Exercise 2 by adding a derived column called

"NextOrderByEmployeeVendor", that returns the “next” vendor name (the “name” field from

Purchasing.Vendor) within the group of all orders that have the same EmployeeID value in

Purchasing.PurchaseOrderHeader. Similar to the last exercise, we are defining “next” based on order

date.

Exercise 4

Modify your query from Exercise 3 by adding a derived column called "Next2OrderByEmployeeVendor"

that returns, within the group of all orders that have the same EmployeeID, the vendor name offset TWO

orders into the “future” relative to the order in the current row. The code should be very similar to

Exercise 3, but with an extra argument passed to the Window Function used.

	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

