FAN LAWS

- 1. Effect of Blower Speed on Flow, Pressure and Power Consumption
 - a. Flow vs. Speed: The flow rate (V) changes in direct ratio to the speed (S)

$$\frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{\mathbf{S}_2}{\mathbf{S}_1}$$

Example: A blower operating at 1750 rpm (S_1) delivers 1000 cfm (V_1) . How many cfm (V_2) will it deliver if speed is increased to 3500 rpm (S_2) ?

$$V_2 = V_1 \times \frac{S_2}{S_1} = 1000 \times \frac{3500}{1750} = 2000 \text{ cfm}$$

b. Pressure vs. Speed: The pressure (P) changes as the square of the speed ratio (S)

$$\frac{P_2}{P_1} = \left(\frac{S_2}{S_1}\right)^2$$

Example: A blower operating at 1750 rpm (S_1) develops 1 psig (P_1) pressure. If speed is doubled to 3500 rpm (S_2) , what is the new pressure (P_2) ?

$$P_2 = P_1 \times \left(\frac{S_2}{S_1}\right)^2 = 1 \times \left(\frac{3500}{1750}\right)^2$$

$$= 1 \times (2)^2 = 1 \times 4 = 4 \text{ psig}$$

c. Horsepower vs. Speed: The horsepower (HP) consumed changes as the cube of the speed ratio (S)

$$\frac{HP_2}{HP_1} = \left(\frac{S_2}{S_1}\right)^3$$

Example: A blower operating at 1750 rpm (S_1) requires a 5 hp (HP_1) motor. How many horsepower (HP_2) will be required to handle a speed increase to 3500 rpm (S_2)?

$$HP_2 = HP_1 \left(\frac{S_2}{S_1}\right)^3 = 5 x \left(\frac{3500}{1750}\right)^3$$

$$= 5 \times (2)^3 = 5 \times 8 = 40 \text{ hp}$$

Laws 1a, 1b and 1c are known as the 1-2-3 *rule* of centrifugal blowers. Volume increases in direct ratio, pressure as the square, and horsepower as the cube, of the speed ratio.

- Effect of Air Density on Flow, Pressure, and Power Consumption.
 - a. Volume Flow vs. Density

Volume flow (cfm) remains constant regardless of density.

b. Weight Flow vs. Density: Weight flow (W) changes in direct ratio to the density (D) or specific gravity (G)

$$\frac{W_2}{W_1} = \frac{D_2}{D_1} = \frac{G_2}{G_1}$$

Example: A blower delivers 1500 lb/hr (20,000 cu ft/hr) (W_1) of air at standard conditions (density $D_1 = 0.075$ lb/cu ft). What will be the weight flow delivered if the air temperature is 250°F?

From page 21, air density (D $_2$) at 250°F is .056 lb/cu ft.

$$W_2 = W_1 \times \frac{D_2}{D_1} = 1500 \times \frac{.056}{.075} = 1120 \text{ lb/hr}.$$

c. Pressure vs. Density: Pressure (P) changes in direct proportion to density (D) or specific gravity (G).

$$\frac{P_2}{P_1} = \frac{D_2}{D_1} = \frac{G}{G}$$

Example: At sea level conditions ($G_1 = 1.0$), a blower develops 28" w.c. pressure (P_1). What pressure (P_2) will it develop at 4000 ft. altitude?

From page 20, air gravity (G₂) at 4000 ft is 0.86.

$$P_2 = P_1 x \frac{G_2}{G_1} = 28 x \frac{.86}{1.0} = 24.1$$
" w.c.

d. Horsepower vs. Density: Horsepower (HP) consumed changes in direct proportion to density (D) or specific gravity (G).

$$\frac{HP_2}{HP_1} = \frac{D_2}{D_1} = \frac{G_2}{G_1}$$

Example: A standard air (G_1) blower requires a 10 hp (HP_1) motor. What horsepower (HP_2) is required if this blower is to handle a gas of 0.5 specific gravity (G_2) ? The gravity of standard air is 1.0, so

$$HP_2 \ = \ HP_1 \ x \, \frac{G_2}{G_1} \ = \ 10 \ x \frac{0.5}{1.0} \ = 5 \ hp$$