

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—1

6. DANS software-development method

The penultimate chapter of this handbook for project management provides a
sketch of the method that DANS applies for the management of software projects.
 One frequently mentioned disadvantage of cyclical working methods is that
they require teams to start working immediately. Too little consideration is given to
what exactly is desired. The expectations of possible customers or clients are not
managed well. Agreements concerning the desired results are inadequate. In this
respect, cyclical methods are less advantageous than is the waterfall approach, in
which all of these matters are settled in the beginning.
 In an effort to avoid this dilemma, DANS applies the best of both methods for
its software-development work. Projects begin with the waterfall method, so that
adequate consideration is given to requirements, requests and design. After the
design phase, there is a shift to the cyclical method, thus allowing felicity for
handling these elements. The cyclical component of the DANS method makes use
of eXtreme Programming (XP) (Chromatic, 2003, [ii], [iii]). Further definition,
design, implementation and testing takes place within the cycles. Once the
software is sufficiently developed, the follow-up phase begins. Each step in this
working method is described below.

Figure 11: Schematic illustration of the DANS software-development method

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—2

Initiation phase
The initiation phase begins with an idea for a project. No budget is yet available for
the project. The goal of this phase is to write a project plan according to which
internal or external financing can be requested.

Activities in the initiation phase:
• Elaborate the concept.
• Examine the base of support.
• Contact possible partners.
• Investigate funding opportunities.
• Prepare an initial global estimate of the control factors for the project.
• Prepare a concrete estimate of the control factors for the definition phase.
• Establish project boundaries.
• Prepare a project plan.
• Apply for funding or establishing contract agreements with possible customers.

End result of the initiation phase:
• Approved and funded project plan
• (Possible) contract with customer

Operations/Decisions:
• (Prospective) project leader
• Client
• (Possible) customer

Tools:
• See Appendix 10 for a model of a project plan.

If possible, instalment financing is preferable to lump sum financing following the
initiation phase. For instalment financing, a relatively small amount of funding for
the operations of the definition and design phases is requested during the initiation
phase. Depending upon the outcome of these phases, a second request for funding
for the rest of the project is made at the end of the design phase.

Definition phase
After a project plan has been approved, the project enters the second phase:
definition phase. In this phase, the requirements that are associated with the result
of the project are determined as clearly and as completely as possible. This is in
order to identify the expectations that all involved parties have for the project
result. The list from Chapter 1 can serve as a memory aid in this regard:

• Preconditions
• Functional requirements
• Operational requirements
• Design limitations

The collaboration of all parties that are involved in a project is very important in
the definition phase, particularly the end users who will actually use the project
result.

Activities in the definition phase:
• Compile list of requirements together with client, (possible) customer, end

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—3

users, experts and project team.
• Balance requirements.
• Test the feasibility of the requirements.
• Report to client, customer or both about the requirements.
• Report on the control factors that have actually been implemented thus far.
• Prepare new global estimate of the control factors for the rest of the project.
• Prepare a concrete estimate of the control factors for the design phase.

Result of the definition phase:
• Approved (tentative) list of requirements
• Approved control reports and prognoses

Operations:
• Current or prospective project leader
• Client
• Current or potential customer
• End users
• Experts
• Current or future programmers and designers
• System administrator (in connection with requirements in the follow-up phase)

Decisions/approval:
• Project leader
• Client
• Current or potential customer

Tools:
• See Appendix 10 for a sample project plan.

In theory, the waterfall method specifies that no additional or supplementary
requirements can be added to the project after the definition phase. The list of
requirements serves as the foundation for the contract between the project team
and the client or customer. The list of requirements is the one to which the project
result must ultimately conform.
 Because this can cause problems with software projects, as we have seen,
DANS does not apply this method strictly. We use the definition phase to
investigate the requirements in order to provide the best possible direction for the
project. Descriptions are also made of what will not be made, in order to clarify the
expectations between customers and producers. Should the advancing insight that
is acquired during the cyclical phases show that certain requirements must be re-
defined, this method of working allows for adjustment (obviously in consultation
and well documented).

Design phase
With the list of requirements that was developed in the definition phase, the project
team is able to make choices concerning the ultimate appearance of the software.
A design document is the result of the design phase in IT projects. The design
document contains an elaboration of the concept and a broad outline of a technical
design. The goal is to investigate what the software will look like, both technically
and functionally (a sample functional design can be found in [iv]).
In this regard, it is helpful to work with dummies in the design phase. A dummy is
a quickly assembled, non-operational (or only partially operational) piece of
software that serves primarily to evaluate the design. These dummies are

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—4

presented to the clients, customers (or both), as well as the end users. One
advantage of dummies over schemas on paper is that they resemble the finished
product.
 In theory, the waterfall method specifies that it is not possible to reverse any
design decisions after the design document has been approved. This is possible in
the DANS working method. The design document serves as the starting point for
the builders. Should advancing insight show that changes in this document are
needed, however, they can be carried out. In addition to being programmed, any
design adjustments that are made during the cyclical phases must be documented
in a ‘project log’. Once the design is sufficiently elaborated (in the opinion of the
project team), the cyclical phase can begin.

Activities in the design phase:
• Prepare the design document.
• Create and evaluate mock-ups (i.e. dummies) with the customer.
• Report on the selected design.
• Report on the control factors that have actually been implemented thus far.
• Prepare a new global estimate of the control factors for the rest of the project.
• Prepare a concrete estimate of the control factors for the cyclical phase.

Result of the design phase:
• Approved design document
• Approved control-factor report and estimates

Operations:
• Project leader
• Designers
• Programmers
• Current or potential end users for design evaluation

Decisions/Approval:
• Project leader
• Client
• Current or potential customer

Tools:
• See [i] for guidelines for creating a design document.
• See Appendix 10 for a model of a project plan.

Cyclical phase
The working methods in the cyclical phase are borrowed from XP. In this phase, a
number of cycles are performed in succession. A cycle lasts no more than one to
two weeks. The following activities take place within each cycle:
• Planning
• Examination of functionalities
• Design of functionalities
• Implementation of functionalities
• Testing of functionalities
• Delivery of functionalities

Planning
At the end of the design phase, an estimate is made of the number of cycles that
will be needed to achieve the project goal. This occurs according to the functional

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—5

and technical design. Cycles are never long; they usually last between two and four
weeks. A cycle always includes the activities of planning, investigating, designing,
implementation, testing and delivery. Each cycle, therefore involves only a few
functionalities (or sometimes only one).
 The procedures for planning are as follows. The desired functionalities are
written jointly by the project leader and the customer on ‘story cards’, starting with
the functionalities that were determined in the definition and design phases. Using
the story cards as a guide, the programmers create a task list, which is a list of
tasks that are involved in implementing a functionality. These tasks should
generally not last longer than a few hours. If a task takes longer, it should be
divided into a number of sub-tasks, or the story card must be divided into several
story cards. Story cards that contain too much work to be completed in one cycle
should be returned to the customer, who must divide the requests and distribute
them over additional story cards. The programmer estimates the amount of time
that will be necessary for each task, thus producing a time estimate for each story
card. Customers can now work with the project leader to determine which of the
functionalities they would like to be implemented first in the next cycle.
 How long does it take to create a website and fill it with fifty pages of text and
a number of photographs? A quick answer from the designer is that it would take
‘about two weeks’ is much too rough. It could well take much longer. Dividing the
task reveals the necessity of creating a CSS, consulting with the client about the
design, programming the design in XHTML, shortening the texts for the Internet,
filling the pages with the texts, adapting the photographs for the Internet and
placing them, allowing the customer to examine the website and removing the last
remaining errors.
 Dividing the work into smaller parts reveals that the task involves much more
work than was initially thought. The client also realises that he is also expected to
do a number of things. Estimating the amount of time that is necessary for each
task yields a much better total estimate (and shows that it is not possible within
two weeks).
 Once the programmers begin, they keep a record of the hours that they have
used to perform each task. They often need more hours than they had originally
estimated. Because they have the opportunity to refer back to their own estimates,
the programmers learn to make increasingly accurate estimates.
Experience has shown that, as a project progresses, a relatively constant difference
factor emerges between the estimates and the number of hours that are actually
needed. After a few cycles, this factor, which is known as the ‘drag factor’, can be
determined according to the average difference between the estimated and the
actual number of hours. The drag factor is used for planning future cycles and in
reports. Multiplying the number of remaining story cards with task lists by the drag
factor provides a particularly reliable indication of how much time is needed to
implement the rest of the project.

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—6

Because the number of hours for the project is limited, choices must be made. The
availability of a reasonable estimate of the time needed to implement a story card
allows a good deliberation between the various story cards. Some story cards are
simpler to implement than others are, and some story cards may be eliminated. An
important starting point for determining the order is that risky story cards must be
handled first, in order to eliminate the most important risks as soon as possible.
The MoSCoW rules are also applicable, or a simple prioritisation from one to five.

Figure 12: Planning functionalities in the cycles

Investigating and designing functionalities
The initial investigation of a functionality takes place during the creation of the task
list for planning. By deciding ahead of time which sub-tasks will be needed to
implement a functionality, the programmer gains more insight into the functionality
itself. The involvement (presence) of the customer is essential for the further
investigation and design of the desired functionality. Customers should specify
exactly what they want. In the beginning, customers have much more contact with
the programmers than they do later in the project, although caution must be taken
to ensure that the programmers do not start thinking for the customer, thereby
making erroneous assumptions.

Implementation of the functionalities
After the customer and the producers have agreed on a design for the desired
functionality, it is built. Programmers always perform this work in pairs (in XP
terms, this is known as ‘pair programming’). Although this may seem non-
productive, pair programming offers the following advantages:

• The knowledge of two programmers is combined.
• Less time is spent transferring knowledge or code within a project.
• Fewer errors occur in programming.
• Problems are resolved more quickly.

There is an additional advantage to working in pairs: the greatest problem is
getting started with programming. Once the work has been started, it can proceed.
Programming in pairs allows the programmers to encourage each other to get the
work started.

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—7

Joel Spolsky, a programmer for Microsoft, realised that he worked effectively for
only about three hours each day [v], and often even less. Other colleagues
apparently had the same experience. The rest of the time was spent drinking
coffee, reading e-mail, surfing the Internet, chatting with colleagues and looking at
the beautiful office courtyard. Working with a partner can increase motivation, thus
making it easier to get started.

Despite its advantages, pair programming also places considerable demands on the
concentration of the programmers, and not all programmers like that. Further, not
all combinations of programmers are capable of working together well. To minimise
these disadvantages, a team might decide to use pair programming for more than
half of each working day (for a further discussion of pair programming, see [vi]).

Testing and delivery
It is essential that every cycle culminates in the release of a new component of the
software and that each component that is delivered is tested Testing consists of a
unit test (conducted by the programmers) and an acceptance test (conducted by
the customer). The customer is thus needed for this task as well.
 The assumption behind including testing in each cycle is that it becomes
exponentially more expensive to repair errors in relation to the time that it has
taken to discover them. A basic assumption underlying the delivery of software in
each cycle is that customers are able to see value for their money as quickly as
possible and that programmers can receive feedback from the users as quickly as
possible. Customers are able to see the progress of the project clearly. This is
particularly important psychologically, and it can improve the customer’s attitude
considerably.
 The working methods of DANS differ substantially from XP on one point: XP
prescribes that a design may not be made before programming has begun. This is
to achieve flexibility and avoid setting many things in stone that later prove less
useful. The author and advisors who have prepared this handbook are of the
opinion that it is indeed helpful to start creating a design in the definition and
design phases. In contrast to the waterfall method, the DANS method allows the
functionalities that were determined in these phases to be adapted in the cyclical
phase.

Activities in the cyclical phase:
• Work through a number of cycles, each of which involves investigation, design,

implementation, testing and delivery.
• Prepare story cards.
• Choose among the story cards.
• Plan the cycles.
• Ensure progress (control factors).
• Prepare a concrete estimate of the control factors for the follow-up phase (at

the end).

Operations/decisions
• Project leader
• Client or customer
• Current or potential end users for testing and design
• Programmers and designers

Tools:
• See Appendix 3 for tools for recording and managing story cards and task lists.

Project Management Handbook, version 1.1
http://www.projectmanagement-training.net

6—8

Follow-up phase
After an adequate result has been achieved in the cyclical phase, the project enters
the follow-up phase. In this phase, the project result is secured. What this means
depends upon the type of project and on the agreements that have been made
with the client or customer. For a research project, a final report would probably
suffice; the development of a new product would require more follow-up.
 Most of the problems in the follow-up phase arise because no clear agreements
were made between the customer or client and the project team at the beginning
of the project. The following are among the points that should be taken into
consideration:

• How long should the follow-up last?
• What does the follow-up entail?
• How quickly must errors be repaired?
• Is there a guarantee on the project result?
• Who is responsible for bugs that are found after the project?
• Should documentation be delivered along with the project result?
• Will the users require training, schooling or both?
• Who is responsible for updates?
• Who will own the code, and who will be authorised to change it?
• Who will pay for the above-mentioned points?

It is important to realise that a project organisation is focused on temporary
activities and is therefore not focused on offering (lengthy) support for the software
that they have developed. Other means of support must be found for the longer
term. Special (commercial) organisations exist for managing software, offering
help-desk support, trainings, server administration, application administration and
similar services. These organisations are likely to be (too) expensive for small non-
profit initiatives.
 Another alternative for securing the continuity of the software is to make it
open-source. For this solution, an organisation is established to allow a group of
developers and users to maintain and support the software.

Activities in the follow-up phase:
• Report on the control factors of the project
• Compile and submit final statement.
• Dissolve team.
• Transfer to the administrative organisation.

Result of the follow-up phase:
• Project statement
• Transfer documents

Operations:
• Project leader
• Team members
• System administrator

Decisions/Approval:
• Project leader
• Client
• Current or potential customer

