
WHITE

Microservices: Why Should
Businesses Care?

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

2page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Introduction
Microservices are gaining traction, making headlines and stimulating new
thinking about how to organize application architecture. But, what exactly
are microservices? At a high level, microservices are a new way to build
applications. They break a large application down into small, independent
services that are not language specific. Regardless of the language
you use within your organization, you can implement a microservices
architecture. Microservices offer IT organizations a great deal of potential
for agility and cost reduction due to their granularity and reuse. Yet, like
so many new architectural paradigms, they introduce challenges as well.
This paper looks at how microservices work and offers some thinking on
how to make the most of them, in business terms while retaining their
inherent technological advantages.

Microservices, an Overview
The term “microservices” refers to a style of software architecture where
complex applications can be composed of small, independent services.
These processes, or “services” exchange data and procedural request
using application programming interfaces (APIs) or events that are
invariably standards-based and language-agnostic. Yet, microservices
go beyond the actual architecture. They are really the product of a rapid
development process, such as DevOps, service-oriented architecture
(SOA) principles, and containers. When you combine fast-moving
software development that leverages the principles SOA and containers,
you’ve got microservices.

Unlike a monolithic application, which is usually designed as single
process that encapsulates several functions related to the application,
the microservices paradigm turns the monolithic architecture inside
out and powers the equivalent application functionality through a set of
decoupled microservices. For example, an ERP application might have an

Abstract: Microservices offer a way to build web-scale
applications by breaking a large application down into
small, independent services. Microservices enable IT
organizations to be more agile and reduce costs by taking
advantage of the granularity and reuse of microservices.
Yet, like other new architectural paradigms, they introduce
challenges as well. This paper looks at how microservices
work and offers some thinking on how to make the most
of them, in business terms while retaining their inherent
technological advantages.

3page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

The Relative Inefficiency of
Monolithic Architectures
An e-commerce suite provides a good example of a monolithic
application and some of its inherent inefficiencies. The
application might consist of a front end user interface along with
services for managing a product catalog, processing orders
and customer accounts. The services share a domain model
consisting of entities, e.g. “Product” or “Order.”

Even though the application has a logically modular design it
is deployed as a monolith. With Java, it would a single WAR
file running on a web container like JBOSS. This architecture
has a number of benefits: They are simple to develop. Most
development tools are geared to this approach. They are easy
to test because they are just a single application. And, they are
relatively simple to deploy.

It’s a good approach for smaller applications. Unfortunately,
monoliths quickly become unwieldy when applications get
complex. They’re hard for developers to understand and
maintain. Frequent deployments are a challenge. To change one
element, the team has to build and deploy the entire monolith
– a complex, risky process that usually results in numerous
additional test cycles.

The monolithic approach also impedes trial and adoption of new
technologies. Trying a new infrastructure framework might mean
rewriting the whole application. The monolithic architecture
doesn’t scale well in support of large, long-term applications.

internal process that allows a user to input a customer’s contact
information and create a log-in credential. Microservices might
recreate that workflow with one service for the customer’s name
and address, another for the phone number, another for the
email, and one for the log-in credentials. Also, each microservice
can be written in whatever language that the developer chooses
to implement it in and can be individually scaled up or down
based on load. The approach enables developers to reuse the
individual components to build new applications much more
quickly than would be possible with conventional development
tools and techniques.

Microservices are focused on providing one capability. “Micro”
doesn’t necessarily mean that it’s small, although it often is. It’s
just singularly focused. It provides one piece of functionality very
well. An ideal microservice also owns it data and data model, and
is not dependent on any other microservice or service for it.	

The Appeal of Microservices
Microservices have been in the background of IT for a long
time, but they are growing in popularity today because we have
new supporting technologies that makes them practical. The
enthusiasm about microservices goes beyond feasibility, though.
Done right, they greatly improve the entire IT agility picture, with
regard to application development. The contrast is particularly
relevant when comparing the development of new features in a
large, monolithic application versus the microservices approach.

4page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Alternatively, microservices creates the equivalent of many smaller
funnels. The development and deployment process scales more
easily. It’s easier to manage. Independent team can work on their
own microservices, choose their own language and data sources.

The monolithic application is not scalable in the long term. It’s not
scalable from a performance perspective because it’s very difficult
to scale horizontally and vertically. It is also not scalable from an
organizational perspective. It’s very hard to manage one giant
project versus a whole bunch of small projects. There is a lower
cadence and slower pace of change. Agility suffers.

Microservices are also much easier for new developers to learn
and then deploy. In contrast to the monolithic application,
whose app servers are complex and difficult to master, container
deployment is relatively simple. When an effective DevOps
regimen is added to the process, it gets even easier. As other
capabilities are layered into a maturing operational organization
it becomes very simple to deploy and manage the microservices.
However, microservices architectures are not everyone and will
not be successful in organization which have not adopted a
true DevOps culture along with containerization. Also security
considerations are not yet that well defined for a microservices
architecture and organization need to assess the risk and take
proper steps to address security.

How Microservices Decompose
Monolithic Applications
Figure 1 visualizes the contrast using a set of funnels, which
represents the throughput of feature builds in the software
development process. The monolithic application is shown as the big
funnel. A lot features are in the queue to get developed and deployed,
but the process is slowed down by organizational and practical
constraints. Within a period of time, only a certain amount of features
will pass through the funnel.

Figure 1 - Development workflow in a monolithic application vs. microservices.

• Unscalable
• Hard to Manage
• Hard to Learn
• Slow to Deploy

• Scalable
• Easier to Manage
• Easier to Learn
• Quick to Deploy

5page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Containers, also known as “container-based virtualization,”
automate the deployment of applications inside software
containers by providing an additional layer of abstraction and
automation of operating-system-level virtualization on Linux.
They potentially reduce overhead associated with having every
virtual machine (VM) run a completely installed operating system.
Containers are essentially lightweight virtual machines. Different
virtual machines can be deployed off of the same hardware.
Containers are a lighter weight and smaller version of the virtual
machine. A container could be limited to just the application and
the supporting environment. It does not include the operating
system and hypervisor framework.

Microservices vs. SOA
Microservices are different from Service-Oriented Architecture
(SOA) though the two architectural styles share a common
ancestry and a number of common traits. SOA became very
vendor and standards driven, though that was never the intent.
SOA was supposed to be technology agnostic, but many years
ago, the vendors drove SOA down a particular path. They gave
us SOAP and enterprise service buses (ESBs). This is very heavy
architecture, which is contrary to today’s microservices. In
some ways, microservices are not SOA. They are supposed to
be lightweight and small. In other respects, while microservices
reaffirm many SOA principles, they are almost a reaction against
that traditional vendor-driven SOA. Microservices are decidedly
anti-ESB, for instance.

The Microservices Architecture
To understand microservices, you have to see the bigger picture of
how they are built and deployed. Figure 2 depicts a highly simplified
microservices architecture. A registry allows you to register new
end points for microservices. Microservices have re-invented the
registry. The registry has become something of a runtime discovery
mechanism than a design time discovery mechanism, but it
facilitates both models.

The microservices themselves are deployed on containers.
There should be a set of well-defined conventions on how your
microservice interacts with the rest of the world. On the top
right-hand side of Figure 2, a microservice uses a client for load
balancing and automatically generating proxy scripts to facilitate
the calls to other microservices. There are available frameworks and
platform that will help you and facilitate many of these capabilities.

Figure 2 - Microservices architecture

REGISTRY HEATH AND RESILIENCY

CONVENTION

MICROSERVICES

MICROSERVICES

MICROSERVICES MICROSERVICES MICROSERVICES MICROSERVICES

WHATEVER
YOU WANT

CLIENT

LOAD BALANCING

AUTOGEN

6page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Why Should Businesses Care
about Microservices?
Microservices are a potential boon to business because they
can help improve agility. The combination of DevOps and
microservices enables a development organization to move
faster in delivering new features. As a small development effort,
a microservice can be built faster than the typical large-scale
software development project involving a monolithic application.
It’s easier and faster to manage changes. Microservices are
more fluid and move at their own pace. There are no waterfalls in
development process, as you have with a monolithic application.
Each microservice is independent and can be developed with
any programming language or constructs. You also get better
variability. Small microservices can be combined into bigger
solutions. Of course, this assumes that the DevOps process
is working well, that the organization understands how to do
microservices with DevOps and that the microservices can be
managed effectively.

The Role of the APIs in
Microservices
Understanding the role of the API in a microservices architecture
requires a sense of how APIs differ from microservices. APIs
are about providing connectivity. How does one connect
an application to another? How does one support digital
transformation and support a large eco-system of developers and
partners and making it easy for them to consume your data or
applications. Microservices are different. They provide agility and
scale. The difference between an API and a microservice is not
based on technology. It’s got to do with the business case. An API
is about making a service or application available for a large set of
developers, and a microservice is about building flexible and agile
application in and delivering them faster. These definitions are not
necessarily absolutes, but they help us understand them.

APIs and microservices are complementary to each other. An
API takes an existing service, productizes it and then enables it
to be marketed to an end consumer. The end consumer could be
internal, a partner or the general public. APIs are geared towards
easier and better consumption of those services. The API is
the connector that allows you to invoke microservices from an
application. Essentially, you need APIs to make microservices
work. As a result, the management and security of APIs are critical
to a proper functioning microservices architecture. Microservices,
on the other hand, are used to build the application and services
themselves, while an API can frontend a single or multiple
microservices in the backend.

7page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Re-Architecting an Application for
Microservices
Embracing microservices will necessarily involve some pretty
big changes in thinking, processes and tooling. This will be true
whether you’re starting completely from scratch with a “green
field” application or re-architecting existing applications into the
microservices mode. It may be easier to do a green field project,
but there are still a number of major issues to figure out before
you start.

While a new framework and platform are required, there is a
danger of investing in too heavyweight a platform. You may
face pressure from various stakeholders to acquire tools that
create bloat. Our recommendation is to keep it as lightweight as
possible. Avoid implementing a huge platform and framework
and standardizing across the entire organization just to implement
microservices. The “must haves,” however, are a registry, the
ability to do load balancing and smart end points.

Microservices failures are also less catastrophic than breakdowns
in bigger systems. A failure in one part of a monolithic application
is usually quite detrimental to everything else. In the aftermath,
you have to diagnose the problem and perhaps release another
version of the application to fix that particular error. It’s quicker and
easier to fix a problem in a microservices architecture. You identify
it, isolate it, and compensate for it. If you have a microservices
architecture, you can scale microservices to overcome a
performance constraint. Or you can quickly build a new version
of the faulty microservice without dealing with the operational
waterfall that exists with a monolithic application.

Microservices give you better reliability and elasticity. You can scale
up any one part of your application. For example, if your log-in is
suffering because you are getting of a lot of new users this month,
you can scale that particular part of the application better with
microservices architecture. Think about how it’s always been done.
If you have a spike in log-ins, you would have to stand up new
app servers that run the big monolithic application just because
that one particular page or one particular part of the site is being
used more than others. The microservices architecture provides a
more elastic approach. In this case, containerization allows you to
quickly deploy as many new instances of the log-in microservice as
you need and then load balance across all of them.

8page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Ultimately, you will have a set of services on the front end
depending on a set of microservices on the back end. You
have now decoupled yourself entirely from the data. Each one
of these different microservices has its own data. They might
be using NoSQL or something equivalent to actually persist
and aggregate that data. The goal is to ensure that each of
those things is independent. Potentially you have wired the
microservices together.

In the end, you have migrated from a single data model and
single database (Or single data store to a multi-data store) and
broken up your application into individual microservices. You
have split your data and application. You can scale any one of
these little things in a container as much as you want, to support
the needs of your front end.

New Skills and Practices

Getting into microservices means training people how to
design microservices architectures. These are new skills, not
widely known at this time, though the IT profession continues
to become more fluent in microservices. Most notably,
microservices changes development practices. The scope of
development projects is different to the point where the whole
requirements gathering and coding thought process has to
change. This is true even for teams that are well-versed in agile
methodologies. You’re developing in tiny bites. Testing also
changes. QA people have to understand what a microservices
architecture is and what that means to the testing effort, so that
things don’t fall through the cracks.

Martin Fowler, an industry thought leader on enterprise
software, provides an outstanding rundown on new skills and
practices that IT organizations must master to succeed with

Given the effort involved in re-architecting an application, the best
practice is to select one that is strategic. (Perhaps not as your first
project. For that, you may want to test the process on something
small and peripheral.) However, when you need to make an
investment of resources, it should be an application that can justify
the time and money. It has to be strategic to the business.

Prerequisites and Sanity Checks

These are prerequisites or sanity checks prior to moving ahead
and re-writing an application to leverage a microservices
architecture: You will need smaller teams, for one thing. With
monolithic applications, even if you divide it up functionally,
ultimately you have a large team. It’s the interdependencies that
are tough to avoid, especially when it comes to deployment
and release management. You should also try to leverage
lightweight communication protocols because if you have a lot of
microservices, you’re going to affect your network. For example, a
single page load on Amazon.com might call 150 services. You’re
going to have a lot of traffic as you through all of those calls. It’s
best to use asynchronous loading.

Breaking Up Component Parts

One approach to re-architecting an application is to conduct the
process in stages, starting by breaking it up into its component
parts. Each of those component parts provides a set of or one or
more services. You may need to move logic out of your data tier
and push data into different data stores without having a mass
migration of a large volume of data that uses different architectures
for different parts of the application. Moving data stores gives you
more options from an application architecture perspective. You get
more control over the functionality of the microservices you deploy.

9page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

• Design - Traditional design and the oversights that you had are
no longer relevant. Everyone will use the best tools to create
the microservice. You will need to control the microservice
definition and the interface but you cannot control all the
moving parts of the process.

• Designing microservices the right way - You need to
facilitate design time review of available services and find a
way to force people to request the service. This is why you
need to have a registry that enables people to look for services.
If you don’t find them, you have to request a new service or a
new interface. Then somebody will say, “Yes. That looks like a
good interface. Let’s build that as a microservice.” There will
probably be some approvals to go through.

• Adopt conventions - You will need to adopt certain
conventions about the interface that you’re exposing. You will
need to have an end point, for example. These conventions
have to be established around the design of your interfaces.
Then, they have to integrate within your framework and
infrastructure to enable making those lasting choices and
decisions during runtime.

• Design for robustness - Microservices affect design and the
design pattern. You might have a proxy end point, for instance,
that enables you to do the routing and resiliency on the back
end. Then you need to understand distributed data design and
the main driven design has around data. Ultimately, data has to
separated into a microservice.

microservices.1 In Fowler’s view, the following are the concepts that
people need to wrap their heads around to get an idea of what to
implement the right kind of microservice. As he notes, you can take
a bad application and build a bunch of bad microservices out of it.

• Componentization via services – Knowing how to create an
interface that leverages the best technology for the job,
e.g. REST.

• Organize around business capabilities - Microservices
need to be organized around distinct business capabilities.
The microservices developer creates products, in effect, not
projects. Given that the service will have its own complete
lifecycle, it’s really a matter of product management, not software
development.

• Deliver smart end points and dumb pipes - You will have
to orchestrate or choreograph the different end points. Load
balancing is built into the framework and the end points. The
registry contains end points. The content has decentralized
governance. The registry is built into the service itself. The data
management will become decentralized, moving to a more
functional domain-driven design context versus a traditional data
model.

• Automate the infrastructure and design for failure -
The architecture needs to be continually adjusting for and
compensating for failure. Ideally, you build failure into the testing
of the microservices infrastructure so that while you’re doing
testing, services fail. Containers disappear or shut down. Things
start running slower. The infrastructure has to scale automatically.

 1 http://martinfowler.com/bliki/MicroservicePrerequisites.html

10page

WHITE

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

Conclusion
Like earlier waves of change in enterprise architecture,
microservices present a bundle of opportunities and challenges.
The business upside is definitely available for organizations
that embrace microservices and pursue them with the right
tooling and processes. Microservices represent a quite new
approach to creating applications, however. They combine the
concepts of SOA, containers, and DevOps. As a result, getting
to a successful microservices architecture will require changes
on multiple levels. The way you conceive of an application, the
way you staff the development and testing teams, the way you
scope out the parameters of any give microservice – these are
all going to require some pretty extensive rethinking of the way
things get done. Microservices require new skillsets. Migrating
old applications to microservices means breaking them down
into component parts and putting them back together again.
None of this is easy, but it is worth it. The gain is there if you do
it right. You get more agility and flexibility with your software.
You can scale elastically. You can move quickly. It’s time to
explore microservices.

Disclaimer: The information provided in this document is provided “AS IS” WITHOUT ANY WARRANTIES OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF INTELLECTUAL PROPERTY .
Akana may make changes to this document at any time without notice . All comparisons, functionalities and measures as related to similar products and services offered by other vendors are based on Akana’s internal assessment and/or publicly available information of Akana and other vendor product
features, unless otherwise specifically stated . Reliance by you on these assessments / comparative assessments are to be made solely on your own discretion and at your own risk . The content of this document may be out of date, and Akana makes no commitment to update this content . This document
may refer to products, programs or services that are not available in your country . Consult your local Akana business contact for information regarding the products, programs and services that may be available to you . Applicable law may not allow the exclusion of implied warranties, so the above
exclusion may not apply to you .

© 2001 - 2015 Akana, All Rights Reserved | Contact Us | Privacy Policy

About Akana
Akana is a leading provider of API Security and Management
products that help businesses plan, build, run and share
APIs, through comprehensive cloud and on-premise solutions
that encompass API lifecycle, security, management and
developer engagement. The world’s largest companies
including Bank of America, Pfizer, and Verizon use Akana
solutions to transform their business.

For more information, please visit www.akana.com

Akana, API Gateway, Community Manager, Lifecycle
Manager, Policy Manager, Portfolio Manager, Repository
Manager, Service Manager, and SOLA are trademarks of
Akana, Inc . All other product and company names herein
may be trademarks and/or registered trademarks of their
registered owners.

WHITE

Trademarks
Akana, Policy Manager, Portfolio Manager, Lifecycle Manager,
Service Manager, and Community Manager are trademarks of
Akana, Inc. All other product and company names herein may
be trademarks and/or registered trademarks of their registered

Akana
12100 Wilshire Blvd, Suite 1800
Los Angeles, CA 90025

(866) 762-9876 | www.akana.com | info@akana.com

