

LOW VOLTAGE CIRCUIT BREAKER DESIGNING

Compiled by: Er. SADIQ HUSSAIN | INDIA

Table of content

1.	Introduction
2.	Operations of CB
3.	Types of CB
4.	Parts of CB
5.	Working Principle
6.	Specifications of MCB/MCCB11
7.	Calculation for CB12

Introduction

- A Circuit Breaker is an automatically operated electromechanical switch designed to protect an electrical circuit from damage caused by an overload or a short-circuit. *"A short circuit is an over-current but not an overload"*
- Basically used to detect fault condition and immediately cut the power supply.
- Unlike fuse, which operates once and then has to be replaced, a circuit breaker can reset to resume normal operation.

Operations of Circuit Breaker

- The Circuit breaker should detect the fault only when fault occurs.
- Once the fault is detected, contacts within the circuit breaker must open to interrupt the circuit.
- The circuit breaker contacts must carry the load current without excessive heating, and must also withstand the heat of the arc produced when interrupting the circuit.
- Finally, after the fault clearance, the contacts must again be closed to restore power to the interrupted circuit.

Types of Circuit Breakers

- 1. Miniature Circuit Breaker (MCB)
 - MCB is an automatic electro-mechanical switch, used to protect an electric circuit under abnormal condition.

- MCB is available in Single Pole, Double Pole, Triple Pole & Four Pole MCBs
- Operating current range 6A to 63A
- Thermal or thermo magnetic trip operation
- Trip setting cannot be adjusted
- MCB is more sensitive to over current than fuse

2. <u>Moulded Case Circuit Breaker (MCB)</u>

- The working principle for MCB and MCCBs is almost same, but both may have different applications
- Operating Current range- 64A to 800A
- Trip setting can be adjusted
- Thermal or thermo magnetic trip operation

3. Air Blast Circuit Breaker (ACB)

- Operating current Range: Up to 10,000A
- Trip setting is fully adjustable
- Electronically and microprocessor controlling
- Used in Low as well as High voltage and Currents applications
- Used for protection transformer, generators, capacitors & for main power distribution in large industrial plant

4. Vacuum Circuit Breaker (VCB)

- These breakers interrupt arc in a vacuum tube
- These can be applied at up to 33KV
- VCB has longer life

Parts of MCB

Cross-Sectional View

Parts of MCB

INCOMING AND OUT GOING TERMINAL

INSIDE OF MAGNETIC UNIT

KNOB

Parts of MCB

Working Principle

On/Off Positions

Specifications/Name plate of MCB or MCCB

Following specifications are required to select an appropriate MCB or MCCB.

Technical Information of MCB & MCCB				
Type/Series	B, C, D			
Rated Current (A)	-			
Rated Voltage (V _{AC})	230V/415V			
Rated Frequency (Hz)	50/60			
No. of Poles	SP, SP+N, DP, TP, TP+N, FP			
SC breaking capacity	-			
Rated Insulation Voltage (V)	-			
Electrical/Mechanical life	No. of operations			
Terminal capacity (sq. mm)				
Installation Position	Vertical/Horizontal			

Types of MCB/MCCB

Туре	Operating Current	Suitability
В	[3-5]*I _{rated}	Resistive load
С	[5-10]*I _{rated}	Inductive load
D	(10-20]*I _{rated}	Inductive-Capacitive load

Calculation of Circuit Breaker

Classification of CB according to Ratings:

МСВ	6A - 63A
МССВ	64A - 800A
ACB	Above 800A

Standard Sizes of CB:-

6A, 10A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A, 100A, 125A, 160A, 180A, 200A, 250A, 300A, 350A, 400A, 630A, 800A, 1000A, 1500A 1600A, 2000A, 2500A, 3000A, 3500A, 4000A, 4500A & 5000A

Circuit Breaker Size:-

- CB size is depends on the load current.
- Tripping time for HT side CB <3 sec
- Tripping time for LT side CB = (0.01 to 1) sec
- NEC -80% of the rated current is a safe current limit to flow though the CB

CB Size = 1.25*Full load current

LV CB Designing

LV CB Designing

Circuit Breaker Size Calculation

At Feeder 1

TCL:- 82 KW

Calculate current for the load of 82KW

Since, 82KW > 5KW therefore go with 3- ϕ system

Then, $P = \sqrt{3*V*I*Cos \phi}$

V=415V, Cos φ=0.8, P=82KW

I= 142.77A

CB Size = 1.25*Full load current

CB Size = 1.25* 142.77

CB Size = 178.46A

So, proposed size of the CB= 180A, MCCB

At Feeder 2

TCL:- 130 KW

Calculate current for the load of 130KW

Since, 130KW > 5KW therefore go with 3- ϕ system

Then, $P = \sqrt{3} V^* I^* Cos \phi$

V=415V, Cos φ=0.8, P=130KW

I= 226.34A

CB Size = 1.25*Full load current

CB Size = 1.25* 226.34

CB Size = 282.92A

So, proposed size of the CB= 300A, MCCB

At Feeder 3

TCL:-15HP

Calculate current for the load of 15HP

Since, 15HP > 6HP therefore go with 3- ϕ system

Then, $P = \sqrt{3*V*I*Cos \phi}$

V=415V, Cos φ=0.8, P=15HP P=15*746

P=11.19KW

I= 19.48A

CB Size = 1.25*Full load current

CB Size = 1.25* 19.48

CB Size = 24.35A

So, proposed size of the **CB= 25A, MCB**

At Feeder 4

TCL:- 2 KW

Calculate current for the load of 2 KW

Since, 2KW < 5KW therefore go with 1- ϕ system

Then, $P = V^*I^*Cos \phi$

V=230V, Cos φ=0.8, P=2KW

I= 10.87A

CB Size = 1.25*Full load current

CB Size = 1.25* 10.87

CB Size = 13.59 A

So, proposed size of the CB= 16A, MCB

At Feeder 5

TCL:- 80 KW

Calculate current for the load of 80KW

Since, 80KW > 5KW therefore go with 3- ϕ system

Then, $P = \sqrt{3*V*I*Cos \phi}$

V=415V, Cos φ=0.8, P=80KW

I= 139.28A

CB Size = 1.25*Full load current

CB Size = 1.25* 139.28

CB Size = 174.1 A

So, proposed size of the **CB= 180A, MCCB**