
 
 
 

Data Science and Machine Learning 

Essentials 
Lab 2D –  Cleaning, Transforming, and Integrating Data  

By Stephen Elston  

 

Overview 
In this lab, you will develop skills for data cleaning, transformation and integration. Collectively this 
process is known among data scientists as ‘data munging’. Data munging is often the most complex, 
time consuming and difficult part of a data science project. 

Note: This lab builds on knowledge and skills developed in the previous labs. If you have little experience 

with using Python or R in Azure ML, and you did not complete the previous labs, you are advised to do so 

before attempting this lab. 

 

What You’ll Need 
To complete this lab, you will need the following: 

 An Azure ML account 
 A web browser and Internet connection 

 The lab files for this lab 

 
Note: To set up the required environment for the lab, follow the instructions in the Setup document for 

this course. Then download and extract the lab files for this lab. 

Cleaning Missing and Repeated Values 
In this exercise, you will apply the Clean Missing Data and Remove Duplicate Rows modules to a data 
set that contains data on over 101,000 admissions and readmissions of diabetic patients at 130 US 
hospitals. Many algorithms will not accept missing values, so some action is often required when this is 
the case. Duplicated or repeated rows can cause an imbalance in the cases in a data set, which adversely 
affect the performance of many machine learning algorithms. 

Note: The data used in this exercise was obtained from the University of California machine learning 

repository.  

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University 

of California, School of Information and Computer Science. 



 
 

Create an Experiment  
1. Open a browser and browse to https://studio.azureml.net. Then sign in using the Microsoft 

account associated with your Azure ML account. 

2. Open the Diabetes Data experiment you created in Lab 2A. If you did not complete Lab 2A, you 

can copy the Diabetes data experiment from the collection for this course in the Cortana Analytic 

Library at http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.  

3. Save a copy of the experiment as Diabetes Data (Cleansed). 

Configure and Run the Missing Data Module 
1. In the Diabetes Data (Cleansed) experiment, visualize the Dataset result dataset of the Join 

module, and view the statistics for the payer_code column as shown in the following image. 

 

2. Note that the payer_code column has a large number of missing values, and then close the 

dataset. 

3. In the Diabetes Data (Cleansed) experiment, search for the Clean Missing Data module and 

drag it to the canvas under the Join module. Then connect the output from the Join module to 

the input port of the Clean Missing Data module. Your experiment should look similar to the 

following image. 

https://studio.azureml.net/
http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9


 
 

 

4. Select the Clean Missing Data module and in the Properties pane, launch the column selector. 

Then select the option to begin with no columns, and select only the payer_code column as 

shown in the following image. 

 

5. In the Properties pane, in the Cleaning mode list, select Custom substitution value, and in the 

Replacement value textbox, type “None” as shown in the following image. 

 



 
 

6. Save and run the experiment. Then, when the experiment has finished running, visualize the 

Cleaned dataset output of the Clean Missing Data module, and verify that the value “None” is 

now used to replace any missing payer_code values; as shown in the following image.  

 

7. Note the total number of rows (indicated at the top left), and then close the cleaned dataset. 

Remove Duplicate Rows 

1. In the Diabetes Data (Cleansed) experiment, search for the Remove Duplicate Rows module 

and drag it to the canvas under the Clean Missing Data module. Then connect the Cleaned 

dataset output from the Clean Missing Data module dataset to the input port of the Remove 

Duplicate Rows module.  

2. Select the Remove Duplicate Rows module, and in the Properties pane, launch the column 

selector to select the encounter_id column. This column should be unique for each row. After you 

have selected this column, your experiment should resemble the following image. 



 
 

 

3. Save and run the experiment. Then, when the experiment has finished running, visualize the 

Results dataset output of the Remove Duplicate Rows module, and verify that the total 
number of rows has changed (because rows containing duplicate encounter_id values were 
removed). 

4. Close the results dataset. 

Filtering Outliers 
In some cases, you may want to determine whether your data contains any values that deviate 

substantially from the norm, or outliers. Outliers can make the data difficult to interpret and make 

training a model less effective, so detecting the presence of outliers is an essential step in cleaning data 

for further analysis. 

In this exercise you will examine a dataset containing information about forest fires in Portugal (which is 

provided as a sample dataset in Azure ML), detect the presence of outliers, and then use the Clip Value 

module in Azure ML to remove them. 

Visualize Outliers 
1. In your browser, in Azure ML Studio, create a new blank experiment and name it Forest Fires 

Outliers. 

2. In the list of experiment items, search for the Forest fires data dataset, and drag it to the canvas. 

3. Visualize the dataset output port of the Forest fires data dataset, and note the total number of 

rows it contains. Then note that the dataset contains the following columns: 

 X and X: The coordinates identifying the grid square location of the fire. 

 month and day: The month and day the fire occurred. 

 FFMC, DMC, DC, and ISI: The numerical values for Fine Fuel Moisture Code, Duff Moisture 

Code, Drought Code, and Initial Spread Index. These are specialist measurements used in 

the study of forest fires. 

 temp, RH (relative humidity), wind, and rain: Meteorological measurements at the time 

of the fire. 

 area: The size of the area affected by the fire. 



 
 

In this experiment, area represents the value that can be predicted by the other columns. 

However, before building a model, you should explore the relationships between this label 

column and the feature columns; and remove any outlier values that may skew the analysis. 

4. Select the area column, and note the Mean, Min, and Max statistics for this column. Then look at 

the histogram, as shown here: 

 

Note that the vast majority of fires are quite small – usually less than one acre; but there are also 

some very large fires. 

5. In the list of columns, select the FFMC column and view the statistics for this column. 

 

6. Note that the Min value for this column is significantly lower than the Mean and Median values, 

indicating that most FFMC values are high, but there are some low outliers. 



 
 

7. In the list of columns, select the ISI column and view the statistics for this column. 

 

8. Note that the Max value for this column is significantly higher than the Mean and Median values, 

indicating that most ISI values are low, but there are some high outliers. 

9. Select the area column again, and in the Visualizations area, in the compare to list, select 

month. This displays a scatter plot chart that shows month and area values as shown in the 

following image. 

 

Note that while most plots are shown near the bottom of the chart, there are a few isolated plots 

that indicate extremely large fires during the late summer months of July, August, and September. 

This is not unexpected, so the outlier values for large area values have a reasonable explanation, 

and should remain in the dataset. 

 

10. In the compare to list, select FFMC and view the resulting scatter plot: 



 
 

 

11. The chart shows most plots clustered around the top left, which corresponds to high FFMC values 

and small fires. There are a few plots on the right that indicate large fires with high FFMC values; 

but because we already know that while most fires are small there are a few large ones, this 

seems to be reasonable. However, there are a few outlier plots that show low FFMC values for 

small fires; which could potentially indicate some erroneous data. 

12. In the compare to list, select ISI and view the resulting scatter plot: 

 

13. As with FFMC, the chart shows most ISI values are clustered together, and we can ignore the 

outliers to the right that indicate large fires. However, there is an outlier that show a high ISI value 

for a small area; which again seems unusual, and may indicate some issues with the ISI data. 

14. Close the dataset. 

 

Remove Outliers and Clean Missing Data 
1. In Forest Fires Outliers experiment, search for the Clip Values module, drag it to the canvas 

under the Forest fires data dataset, and connect the output from the Forest fires data dataset to 

the input port of the Clip Values module. 

2. Select the Clip Values module and in the Properties pane, set the following property values: 

 Set of thresholds: ClipSubpeaks 

 Lower threshold: Percentile 

 Percentile number for lower threshold: 1 

 Lower substitute value: Missing 

 List of columns: Launch the column selector and select only the FFMC column name. 



 
 

 Overwrite flag: Selected 

 Add indicator column: Unselected 

This removes the FFMC value for any rows where it is in the bottom one percentile. 

3. Drag a second Clip Values module to the canvas under the first Clip Values module. Then 

connect the output from the first Clip Values module to the input port of the second Clip Values 

module. 

4. Select the second Clip Values module and in the Properties pane, set the following property 

values: 

 Set of thresholds: ClipPeaks 

 Upper threshold: Percentile 

 Percentile number for upper threshold: 99 

 Upper substitute value: Missing 

 List of columns: Launch the column selector and select only the ISI column name. 

 Overwrite flag: Selected 

 Add indicator column: Unselected 

This removes the ISI value for any rows where it is in the top one percentile. 

5. In the list of experiment items, search for the Clean Missing Data module, and drag it to the 

canvas under the second Clip Values module. Then connect the output from the second Clip 

Values module to the import port of the Clean Missing Data module. 

6. Select the Clean Missing Data module and in the Properties pane, set the following property 

values: 

 Columns to be cleaned: Launch the column selector and configure it to begin with no 

columns, and include only the FFMC and ISI column names. 

 Minimum missing value ratio: 0 

 Maximum missing value ratio: 1 

 Cleaning mode: Remove entire row 

7. Verify that your experiment resembles the following image, and then save and run it. 

 

8. When the experiment has finished running, visualize the Cleaned dataset output of the Clean 

Missing Data module, and note the number of rows it contains. There should be fewer rows than 

in the source Forest fires data dataset because the rows containing outliers have been removed. 

9. Select the FFMC column and note the Mean, Min, and Max statistics for this column. These 

should be higher than in the source data because low-valued outliers have been removed. 



 
 

10. Select the ISI column and note the Mean, Min, and Max statistics for this column. These should 

be lower than in the source data because high-valued outliers have been removed. 

11. Select the area column, and in the Visualizations area, in the compare to list, select FFMC and 

view the scatter plot chart: 

 

Note that the very low outlier value that was previously present is no longer there. 

12. With the area column selected, in the Visualizations area, in the compare to list, select ISI, and 

view the scatter plot chart: 

 

Note that the outlier value that was previously present is no longer there. 

13. Close the cleaned dataset. 

Scale the Data 
In this procedure you will use the Normalize Data module to scale columns of the forest fire data set. 

Scaling is often essential when training machine learning algorithms. 

1. In the Forest Fires Outliers experiment, search for the Normalize Data module, and drag it to 

the canvas under the Clean Missing Data module. Then connect the Cleaned dataset output 

port of the Clean Missing Data module to the input port of the Normalize Data module. 

2. Select the Normalize Data module, and in the Properties pane, ensure that the following 

properties are set: 

 Transformation method: ZScore (this is the default selection) 

 Columns to transform: All numeric columns (this is the default selection) 



 
 

3. Verify that your experiment resembles the following image, and then save and run the 

experiment. 

 

4. When the experiment has finished running, visualize the Transformed dataset output port of the 

Normalize Data module and select the ISI column. 

5. View the statistics for the ISI column values and verify that they are zero-centered, with a Mean 

value of 0, as shown in the following image. 



 
 

 

6. Close the transformed dataset. 

Removing Outliers with R 
In this exercise, you will use a custom Python or R script to visualize outliers, and to clean and transform 

data. 

Note: If you prefer to work with Python, skip this exercise and complete the next exercise Removing 
Outliers with Python. 

Visualize Outliers with R 
1. In your browser, in Azure ML Studio, create a new blank experiment and name it Forest Fires (R). 

2. In the list of experiment items, search for the Forest fires data dataset, and drag it to the canvas. 

3. Visualize the dataset output port of the Forest fires data dataset, and note the total number of 

rows it contains. Then select the FFMC column, and note the Mean, Min, and Max statistics for 

this column. 

4. View the Mean, Min, and Max statistics for the ISI and rain columns, before closing the dataset. 

5. In the list of experiment items, search for the Execute R Script module and drag it to the canvas. 
Then connect the output port from the Forest fires data dataset to the Dataset1 input port of 
the Execute R Script as shown in the following image. 



 
 

 

6. Select the Execute R Script module, and in the Properties pane, replace the default R script with 

the following code (which you can copy from the VisualizeOutliers.R Python script file in the 

folder where you extracted the lab files). 

# Map 1-based optional input ports to variables 

dataset1 <- maml.mapInputPort(1) # class: data.frame 

 

## remove columns 

cols <- c("X", "Y", "month", "day") 

dataset1 <- dataset1[, !(names(dataset1)) %in% cols] 

 

## Create a pairs plot.  

pairs(dataset1) 

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and 
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML 
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the 
code from the clipboard, replacing the existing code. 

This code creates a scatter plot matrix (or pairs plot) visualization of the numeric columns in the 

dataset. You will learn more about using R to create visualizations in Module 3. 

7. Save and run the experiment. Then, when the experiment has finished running, visualize the R 
Device dataset output port of the Execute R Script module (this is the right-most output port), 
and scroll down to the Graphics Device section to view the scatter plot chart that has been 

generated by the R script, which should resemble the following image. 



 
 

 
8. Notice the significant outliers where FFMC, ISI and rain intersect area. These values do not 

correspond to large fires, and are clearly unusual in some way. By using R to visualize all of the 
columns together in a scatter plot matrix, it is easier to see outliers than when using the 
individual visualizations built into Azure ML datasets. 

9. Close the dataset. 

Remove Outliers with dplyr in R 
1. In Azure ML Studio, in the Forest Fires (R) experiment, search for the Execute R Script module 

and drag it to the canvas next to the existing Execute R Script module. Then connect the output 

port from the Forest fires data dataset to the Dataset1 input port of the Execute R Script as 

shown in the following image. 



 
 

 

2. Select the new Execute R Script module, and in the Properties pane, replace the default R script 

with the following code (which you can copy from the CleanForestFires.R script file in the folder 

where you extracted the lab files). 

frame1 <- maml.mapInputPort(1) 

 

## Remove outliers  

library(dplyr) 

frame1 <- frame1 %>% filter(FFMC > 40) %>%  

                     filter(ISI < 30) %>%  

                     filter(rain < 3) 

 

## Output the data frame 

maml.mapOutputPort('frame1') 

Note: When using dplyr filtering in R, you can set finer-grained thresholds for trimming; than 

with the Clip Values module. It is also easier to trim the upper and lower values for multiple 

columns to different thresholds in a single R script than to add multiple Clip Values modules to 

the experiment. 

3. Save and run the experiment. Then, when the experiment has finished running, visualize the 

Results dataset output port of the second Execute R Script module. Then view the Mean, Min, 

and Max statistics for the FFMC, ISI, and rain columns now that outliers have been removed. 

4. Close the dataset. 

Removing Outliers with Python 
In this exercise, you will use a custom Python or R script to visualize and remove outliers. 



 
 

Note: If you prefer to work with R, skip this exercise and use the previous exercise Removing Outliers 
with R. 

Visualize Outliers with Python 
1. In your browser, in Azure ML Studio, create a new blank experiment and name it Forest Fires 

(Python). 

2. In the list of experiment items, search for the Forest fires data dataset, and drag it to the canvas. 

3. Visualize the dataset output port of the Forest fires data dataset, and note the total number of 

rows it contains. Then select the ISI column, and note the Mean, Min, and Max statistics for this 

column before closing the dataset. 

4. In the list of experiment items, search for the Execute Python Script module and drag it to the 
canvas. Then connect the output port from the Forest fires data dataset to the Dataset1 input 
port of the Execute Python Script as shown in the following image. 

 

5. Select the Execute Python Script module, and in the properties pane, replace the default Python 

script with the following code (which you can copy from the VisualizeOutliers.py Python script 

file in the folder where you extracted the lab files). 

def azureml_main(frame1): 

  import matplotlib 

  matplotlib.use('agg') 

   

  import pandas as pd 

  import matplotlib.pyplot as plt 

  from pandas.tools.plotting import scatter_matrix  

 

## Remove unwanted columns  

  frame1.drop(["X", "Y", "month", "day"], axis = 1, inplace = True) 



 
 

 

## Create a scatter plot matrix  

  fig1 = plt.figure(1, figsize = (12,9)) 

  ax = fig1.gca() 

  scatter_matrix(frame1, alpha=0.2, figsize=(10, 10), diagonal='kde', 

ax=ax) 

  fig1.savefig('scatter2.png') 

 

  return frame1 

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and 
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML 
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the 
code from the clipboard, replacing the existing code. 

This code creates a scatter plot matrix visualization of the numeric columns in the dataset. You 
will learn more about using Python to create visualizations in Module 3. 

6. Save and run the experiment. Then, when the experiment has finished running, visualize the 
Python Device dataset output port of the Execute Python Script module (this is the right-most 
output port), and scroll down to the Graphics section to view the scatter plot chart that has 

been generated by the Python script, which should resemble the following image. 

 
7. Notice the significant outliers where FFMC, ISI and rain intersect area. These values do not 

correspond to large fires, and are clearly unusual in some way. By using Python to visualize all of 



 
 

the columns together in a scatter plot matrix, it is easier to see outliers than when using the 
individual visualizations built into Azure ML datasets. 

8. Close the dataset. 

Remove Outliers with pandas in Python 
1. In Azure ML Studio, in the Forest Fires (Python) experiment, search for the Execute Python 

Script module and drag it to the canvas alongside the existing Execute Python Script module. 

Then connect the output port from the Forest fires data dataset to the Dataset1 input port of 

the Execute Python Script as shown in the following image. 

 

2. Select the new Execute Python Script module, and in the Properties pane, replace the default 

Python script with the following code (which you can copy from the CleanForestFires.py Python 

script file in the folder where you extracted the lab files). 

def azureml_main(frame1): 

  import pandas as pd 

  import os.path 

 

## Filter out outliers 

  frame1 = frame1[(frame1["FFMC"] > 40.0) & \ 

                                (frame1["ISI"] < 30.0) & \ 

                                (frame1["rain"] < 3.0)] 

  return frame1 

Note: When using pandas filtering in Python, you can set finer-grained thresholds for trimming; 

than with the Clip Values module. It is also easier to trim the upper and lower values for 

multiple columns to different thresholds in a single Python script than to add multiple Clip 

Values modules to the experiment. 



 
 

3. Save and run the experiment. Then, when the experiment has finished running, visualize the 

Results dataset output port of the second Execute Python Script module. Then view the Mean, 

Min, and Max statistics for the FFMC, ISI, and rain columns now that outliers have been 

removed. 

4. Close the dataset. 

Summary 
In this lab, you have cleaned data to handle missing values, duplicate rows, and outliers. This kind of data 

cleaning is essential to build effective models that will predict labels accurately. 

 

Note: The experiment created in this lab is available in the Cortana Analytics library at 

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9. 

 

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

