

Data Science and Machine Learning

Essentials
Lab 2B – Transforming Data with Scripts

By Graeme Malcolm and Stephen Elston

Overview
In this lab, you will learn how to use Python or R to manipulate and analyze data in Azure ML. If you
intend to work with Python, complete the Transforming Data with Python exercise. If you plan to work
with R, complete the Transforming Data with R exercise. Unless you need to work in both languages,
you do not need to try both exercises.

Note: This lab builds on knowledge and skills developed in the preceding labs in this course. If you have

little experience with Azure ML, and you did not complete the previous labs, you are advised to do so

before attempting this lab.

What You’ll Need
To complete this lab, you will need the following:

 An Azure ML account
 A web browser and Internet connection

 The lab files for this lab

 Python Anaconda or R and RStudio

 A CA Dairy Data dataset (see Prepare the Data steps below)

Note: To set up the required environment for the lab, follow the instructions in the Setup document for

this course. Then download and extract the lab files for this lab.

Prepare the Data
1. Open a browser and browse to https://studio.azureml.net. Then sign in using the Microsoft

account associated with your Azure ML account.

2. Create a new dataset named CA Dairy Data by uploading the cadairydata.csv file from the

folder where you extracted the lab files.

https://studio.azureml.net/

Transforming Data with R
R is a programming language that is commonly used to perform statistical transformations and

visualizations of data. In this exercise, you will use R to transform dairy production data from the state of

California.

Note: If you prefer to work with Python, complete the next exercise, Transforming Data with Python and

skip this exercise.

Create an R Script
In this procedure, you will create R code to manipulate columns in a dataset.

1. Start RStudio, and create a new empty project in a new directory named Dairy in the folder where

you extracted the lab files for this course.

2. In the Console pane, enter the following command to install the dplyr library. If you are

prompted to use a personal library, click Yes.

install.packages('dplyr', dep = TRUE)

3. When the dplyr package has been installed, add a new R script file to the project, and save it as

TransformDairyData.R. Then add the following code to the script file (replacing

C:/DAT203xLabfiles with the path to the folder where you extracted the lab files). You can find

this code in TransformDairyDataR.txt in the folder where you extracted the lab files.

Set a flag to define the environment

Azure = FALSE

if(Azure){

 ## If in Azure, read the input data table into a data frame

 frame1 <- maml.mapInputPort(1)

} else {

 ## If in RStudio read the local .csv file

 dirName <- "C:/DAT203xLabfiles"

 fileName <- "cadairydata.csv"

 infile <- file.path(dirName, fileName)

 frame1 <- read.csv(infile, header = TRUE, stringsAsFactors = FALSE)

}

Select a subset of columns

library(dplyr)

frame1 <- select(frame1, Year, Month, Cottagecheese.Prod, Icecream.Prod,

Milk.Prod)

chain verbs to show totals for August

frame1 <- frame1 %>%

 filter(Month == 'Aug') %>%

 mutate(Total.Prod = Cottagecheese.Prod + Icecream.Prod + Milk.Prod)

If in Azure output the data frame.

if(Azure) maml.mapOutputPort('frame1')

Note that this code is designed to be tested in a local RStudio environment, and when ready, it

can be copied to an Execute R Script module in Azure ML and run successfully there simply by

changing the Azure Boolean variable from FALSE to TRUE. This is a commonly used technique

when developing and testing R code for use in Azure ML.

The code uses the dplyr select method to retrieve a subset of columns from the dairy production

dataset, and then chains the filter and mutate methods to generate a dataset that shows the

total production figures for August each year.

4. Select all of the code in the TransformDairyData.R pane and click Run to run this code. You can

ignore any warnings about some objects being masked. Then in the Console pane, enter the

following command to test the script and display the first five rows of the data frame it generates:

frame1[1:5,]

5. View the results generated by the script, which should include the Year, Month,

Cottagecheese.Prod, Icecream.Prod, Milk.Prod, and Total.Prod values for August each year,

similar to this:

 Year Month Cottagecheese.Prod Icecream.Prod Milk.Prod Total.Prod

1 1995 Aug 4.368 74.981 2.152 81.501

2 1996 Aug 3.979 79.260 2.129 85.368

3 1997 Aug 3.633 75.258 2.366 81.257

4 1998 Aug 3.007 80.306 2.271 85.584

5 1999 Aug 3.018 82.679 2.602 88.299

Use the Script in an Azure Machine Learning Experiment
1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Create a new blank experiment, and give it the title Transform Dairy Data (R).

3. Add your CA Dairy Data saved dataset to the experiment canvas.

4. Find the Execute R Script module, and drag it to the experiment canvas under the CA Dairy Data

dataset. Then connect the output port from the CA Dairy Data dataset to the first input port of

the Execute R Script module as shown in the following image:

5. Select the Execute R Script module, and in the Properties pane, replace the default R code with

the code from the TransformDairyData.R script you created in RStudio.

https://studio.azureml.net/

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

6. Edit the R code in the Properties pane to change the statement Azure = FALSE to Azure =

TRUE. This is required to use the data from the dataset instead of loading it from a local file.

7. Save and run the experiment.

8. When the experiment has finished running, visualize the output from the Results dataset output

port of the Execute R Script module to verify that only the Year, Month, Cottagecheese.Prod,

Icecream.Prod, Milk.Prod, and Total.Prod values for August each year are displayed. Then,

close the results dataset.

Create a Custom R Script Dataset
You can upload a zip file containing R code to create a custom dataset in Azure ML. This can be a useful

technique when you may need to re-use the same script from multiple Execute R Script modules in the

same experiment.

1. In RStudio, open the myutilities.R script in the lab files folder, and view the code it contains. The

code contains a function named round2 that rounds a numerical parameter to two decimal

places, as shown here:

round2 <- function(x){

 ## Round values to 2 decimal places

 round(x, 2)

}

2. Close RStudio. Then, add the myutilities.R script file to a zip archive. If you are using Windows,

you can do this by right-clicking the file in Explorer, clicking Send to, and clicking Compressed

(zipped) folder. If you are using another operating system, you may need to install a

compression utility.

3. In your browser, in Azure ML Studio, click New, and then click Dataset. Then click From Local

File and upload the zipped archive containing the myutilities.R script file, assigning it the name

My Utilities (R).

4. In the Transform Dairy Data (R) experiment, drag a second Execute R Script module to the

canvas and place it below the first Execute R Script module. Then connect the output dataset

from the first Execute R Script module to the first input port of the second Execute R Script

module.

5. Search for the My Utilities (R) dataset you added and drag it to the canvas next to the first

Execute R Script module. Then connect the output port from the My Utilities (R) dataset to the

Script bundle (Zip) input port of the second Execute R Script module as shown in the following

image.

6. Select the second Execute R Script module, and in the Properties pane, replace the existing R

script with the following code (which you can copy from UseMyUtilities_R.txt in the lab files

folder). This code calls the round2 function in the zipped myutilities.R script you uploaded.

frame1 <- maml.mapInputPort(1)

source("src/myutilities.R")

numCols <- c("Cottagecheese.Prod", "Icecream.Prod", "Milk.Prod",

"Total.Prod")

Call the round2 function in the myutilities.R script

frame1[, numCols] <- lapply(frame1[, numCols], round2)

maml.mapOutputPort('frame1')

Note: This code uses the R lapply operator to call the function for each member of a list named

numcols, which contains the numeric columns in the dataset. For more information about using

lapply, enter the command ? lapply in the console window in RStudio.

7. Save and run the experiment.

8. When the experiment has finished running, visualize the Results dataset output port of the

Execute R Script module to view the results, and verify that the numeric values in the dataset

have been rounded to two decimal places. Then close the results dataset.

Transforming Data with Python
Python is a versatile programming language that is commonly used to manipulate and transform data as

part of a data science process. In this exercise, you will use Python to transform dairy production data

from the state of California.

Note: If you prefer to work with R, skip this exercise and complete the previous exercise, Transforming

Data with R.

Create a Python Script
In this procedure, you will create Python code to manipulate columns in a dataset.

1. Start Spyder. Then, if the Spyder interactive development environment (IDE) does not include an

IPython console tab, on the Consoles menu, click Open an IPython Console.

2. Create a new code file, and save it as ProcessDairyData.py in the folder where you extracted the

lab files.

3. In the code pane for the TransformDairyData.py script, enter the following code (replacing

C:\\DAT203xLabfiles with the path to the folder where you extracted the lab files). You can find

this code in TransformDairyDataPy.txt in the lab files folder. The code defines a function named

azureml_main.

def azureml_main(frame1):

 import pandas as pd

 import os.path

Set a flag to define the environment

 Azure = False

If in Azure, the data frame is passed to the function,

If running in the IDE, load it from a local file

 if(Azure == False):

 pathName = "C://DAT203xLabfiles"

 fileName = "cadairydata.csv"

 filePath = os.path.join(pathName, fileName)

 frame1 = pd.read_csv(filePath)

Select a subset of columns

 frame1 = frame1[["Year", "Month", "Cottagecheese.Prod", "Icecream.Prod",

"Milk.Prod"]]

Filter and add a column to show totals for August

 frame1 = frame1[frame1['Month']=='Aug']

 frame1["Total.Prod"] = frame1["Cottagecheese.Prod"] + frame1["Icecream.Prod"]

+ frame1["Milk.Prod"]

 return frame1

Note that this code is designed to be tested in a local Python development environment, and

when ready, it can be copied to an Execute Python Script module in Azure ML and run

successfully there simply by changing the Azure Boolean variable from False to True. This is a

commonly used technique when developing and testing Python code for use in Azure ML.

The code uses pandas operations to retrieve a subset of columns from the dairy production

dataset, filter the data to include only records for August, and add a column containing the total

production figure for each August.

Test the Script on the Local Computer
1. Select all of the code except for the first and last lines (which declare the azureml_main function

and return the dataset). Then, on the toolbar, click Run current cell to run the selected code.

2. In the IPython console pane, enter the following code to return the first five rows of the frame1

data frame generated by your code:

frame1[:5]

3. View the results generated by the script, which should include the Year, Month,

Cottagecheese.Prod, Icecream.Prod, Milk.Prod, and Total.Prod values for August each year,

similar to this:
 Year Month Cottagecheese.Prod Icecream.Prod Milk.Prod Total.Prod

7 1995 Aug 4.368 74.981 2.152 81.501

19 1996 Aug 3.979 79.260 2.129 85.368

31 1997 Aug 3.633 75.258 2.366 81.257

43 1998 Aug 3.007 80.306 2.271 85.584

55 1999 Aug 3.018 82.679 2.602 88.299

Use the Script in an Azure Machine Learning Experiment
1. If you have not already done so, open a browser and browse to https://studio.azureml.net. Then

sign in using the Microsoft account associated with your Azure ML account.

2. Create a new blank experiment, and give it the title Transform Dairy Data (Python).

https://studio.azureml.net/

3. Add your CA Dairy Data saved dataset to the experiment canvas.

4. Find the Execute Python Script module, and drag it to the experiment canvas under the CA

Dairy Data dataset. Then connect the output port from the CA Dairy Data dataset to the first

input port of the Execute Python Script module as shown in the following image:

5. Select the Execute Python Script module, and in the Properties pane, replace the default

Python code with the TransformDairyData.py script you created in Spyder.

Tip: To copy code in a local code file to the clipboard, press CTRL+A to select all of the code, and
then press CTRL+C to copy it. To paste copied code into the code editor in the Azure ML
Properties pane, press CTRL+A to select the existing code, and then press CTRL+V to paste the
code from the clipboard, replacing the existing code.

6. Edit the Python code in the Properties pane to change the statement Azure = False to

Azure = True. This is required to use the data from the dataset instead of loading it from a

local file.

7. Save and run the experiment.

8. When the experiment has finished running, visualize the output from the Results dataset output

port of the Execute Python Script module to verify that only the Year, Month,

Cottagecheese.Prod, Icecream.Prod, Milk.Prod, and Total.Prod values for August each year are

displayed. Then, close the results dataset.

Create a Custom Python Script Dataset
You can upload a zip file containing Python code to create a custom dataset in Azure ML. This can be a

useful technique when you may need to re-use the same function from multiple Execute Python Script

modules in the same experiment.

1. In Spyder, open the myutilities.py in the folder where you extracted the lab files, and review the

code it contains. contains a function named round2 that rounds a numerical parameter to two

decimal places, as shown here:
def round2(df):

Round values to 2 decimal places

 import numpy as np

 return df.apply(lambda x: np.round(x, 2))

2. Close Spyder, and then add the myutilities.py script file to a zip archive. If you are using

Windows, you can do this by right-clicking the file in Explorer, clicking Send to, and clicking

Compressed (zipped) folder. If you are using another operating system, you may need to install

a compression utility.

3. In your browser, in Azure ML Studio, click New, and then click Dataset. Then click From Local

File and upload the zipped archive containing the myutilities.py script file, assigning it the name

My Utilities (Python).

4. In the Transform Dairy Data (Python) experiment, drag a second Execute Python Script module

to the canvas and place it below the first Execute Python Script module. Then connect the

output dataset from the first Execute Python Script module to the first input port of the second

Execute Python Script module.

5. Search for the My Utilities (Python) dataset you added and drag it to the canvas next to the first

Execute Python Script module. Then connect the output port from the My Utilities (R) dataset

to the Script bundle (Zip) input port of the second Execute Python Script module as shown in

the following image.

6. Select the second Execute Python Script module, and in the Properties pane, replace the

existing Python script with the following code (which you can copy from UseMyUtilitiesPy.txt in

the lab files folder). This code calls the round2 function in the zipped myutilities.py script you

uploaded.

def azureml_main(frame1):

 import myutilities as mu

 numCols = ["Cottagecheese.Prod", "Icecream.Prod", "Milk.Prod",

"Total.Prod"]

 ## Call the round2 function in the myutilities script

 frame1[numCols] = frame1[numCols].apply(mu.round2)

 return frame1

7. Save and run the experiment.

8. When the experiment has finished running, visualize the Results dataset output port of the

Execute Python Script module to view the results, and verify that the numeric values in the

dataset have been rounded to two decimal places. Then close the results dataset.

Summary
In this lab, you used a locally installed integrated development environment (IDE) to test R or Python code

before deploying it to an Azure ML experiment. You then created a custom dataset from a zip file

containing a script file, and used it from an Execute Script task.

Note: The experiment created in this lab is available in the Cortana Analytics library at

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9.

http://gallery.cortanaanalytics.com/Collection/5bfa7c8023724a29a41a4098d3fc3df9

